x216xdx\int \frac{\sqrt{{x}^{2}-16}}{x} \, dx

1
Use Trigonometric Substitution
Let x=4secux=4\sec{u}, dx=4secutanududx=4\sec{u}\tan{u} \, du

2
Substitute variables from above.
(4secu)2164secu×4secutanudu\int \frac{\sqrt{{(4\sec{u})}^{2}-16}}{4\sec{u}}\times 4\sec{u}\tan{u} \, du

3
Simplify.
4tan2udu\int 4\tan^{2}u \, du

4
Use Constant Factor Rule: cf(x)dx=cf(x)dx\int cf(x) \, dx=c\int f(x) \, dx.
4tan2udu4\int \tan^{2}u \, du

5
Use Pythagorean Identities: tan2x=sec2x1\tan^{2}x=\sec^{2}x-1.
4sec2u1du4\int \sec^{2}u-1 \, du

6
Use Sum Rule: f(x)+g(x)dx=f(x)dx+g(x)dx\int f(x)+g(x) \, dx=\int f(x) \, dx+\int g(x) \, dx.
4(sec2udu+1du)4(\int \sec^{2}u \, du+\int -1 \, du)

7
The derivative of tanu\tan{u} is sec2u\sec^{2}u.
4(tanu+1du)4(\tan{u}+\int -1 \, du)

8
Use this rule: adx=ax+C\int a \, dx=ax+C.
4(tanuu)4(\tan{u}-u)

9
From the earlier steps, we know that:
secu=14xtanu=(14x)21\begin{aligned}&\sec{u}=\frac{1}{4}x\\&\tan{u}=\sqrt{{(\frac{1}{4}x)}^{2}-1}\end{aligned}

10
Substitute the above back into the original integral.
4((14x)21sec1(14x))4(\sqrt{{(\frac{1}{4}x)}^{2}-1}-\sec^{-1}{(\frac{1}{4}x)})

11
Add constant.
4(x2161sec1(x4))+C4(\sqrt{\frac{{x}^{2}}{16}-1}-\sec^{-1}{(\frac{x}{4})})+C

Done

How can we make this solution more helpful?